

On locally nilpotent derivations of Fermat Rings

Paulo Roberto Brumatti^{*}, <u>Marcelo Oliveira Veloso</u>^{**}

*IMECC-UNICAMP, Campinas-SP, Brazil **DEFIM-UFSJ, Ouro Branco-MG, Brazil

Resumo

Let $\mathbb{C}[X_1,\ldots,X_n]$ be the polynomial ring in *n* variables over complex numbers \mathbb{C} . Define

$$B_n^m = \frac{\mathbb{C}[X_1, \dots, X_n]}{(X_1^m + \dots + X_n^m)},$$

where $m \ge 2$ and $n \ge 3$. This ring is known as Fermat ring.

In a recent paper [4] D. Fiston and S. Maubach show that for $m \ge n^2 - 2n$ the unique locally nilpotent derivation of B_n^m is the zero derivation. Consequently the following question naturally arises: is the unique locally nilpotent derivation of the Fermat ring B_n^m for $m \ge 2$ and $n \ge 3$ the zero derivation?

In the paper [1] we show that the answer to this question is negative for m = 2 and $n \ge 3$. In other words, there exist locally nilpotent derivations over B_n^2 nontrivial. Furthemore, we show that these derivations are irreducible. In the general case, we prove that for certain classes of derivations of B_n^m the unique locally nilpotent derivation is the zero derivation.

The question remains open for the case $m \geq 3$.

Referências

- P. R. Brumatti, M. O. Veloso, On locally nilpotent derivations of Fermat rings, Algebra and Discrete Mathematics, 16, 20-32 (2013).
- [2] D. Daigle, Locally nilpotent derivations, Lecture notes for the Setember School of algebraic geometry, Luk ecin, Poland, Setember 2003, Avaible at http://aix1.uottawa.ca/~ddaigle.
- [3] M. Ferreiro, Y. Lequain, A. Nowicki, A note on locally nilpotent derivations, J. Pure Appl. Algebra 79, 45-50 (1992).

- [4] D. Fiston, S. Maubach, Constructing (almost) rigid rings and a UFD having infinitely generated Derksen and Makar-Limanov invariant, Canad. Math. Bull. 53 no.1, 77-86 (2010).
- [5] G. Freudenberg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Volume 136, Springer-Verlag Berlin Heidelberg (2006).
- [6] L. Makar-Limanov, On the group of automorphisms of a surface $x^n y = P(z)$, Israel J. Math. 121, 113-123 (2001).