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Resumo

Let C[Xi,...,X,] be the polynomial ring in n variables over
complex numbers C. Define

B C[X1,...,X,]
TP X

where m > 2 and n > 3. This ring is known as Fermat ring.

In a recent paper [4] D. Fiston and S. Maubach show that for
m > n?—2n the unique locally nilpotent derivation of B is the zero
derivation. Consequently the following question naturally arises: is
the unique locally nilpotent derivation of the Fermat ring B for
m > 2 and n > 3 the zero derivation?

In the paper [1] we show that the answer to this question is
negative for m = 2 and n > 3. In other words, there exist locally
nilpotent derivations over B2 nontrivial. Furthemore, we show that
these derivations are irreducible. In the general case, we prove that
for certain classes of derivations of B} the unique locally nilpotent
derivation is the zero derivation.

The question remains open for the case m > 3.
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